博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
JVM基础二| 深入理解JVM内存对象
阅读量:2440 次
发布时间:2019-05-10

本文共 6236 字,大约阅读时间需要 20 分钟。

引言

Java是一门面向对象的编程语言,在Java程序运行过程中无时无刻都有对象被创建出 来。在语言层面上,创建对象(例如克隆、反序列化)通常仅仅是一个new关键字而已,而 在虚拟机中,对象(课中讨论的对象限于普通Java对象,不包括数组和Class对象等)的创建 又是怎样一个过程呢?

对象的创建

虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一 个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。对象创建的总体流程如下图所示:

对象创建的总体流程

 1、类加载检查

虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一 个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。new指令对应到语言层面上讲是,new关键词、对象克隆、对象序列化。

2、分配内存

在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类 加载完成后便可完全确定,为对象分配空间的任务等同于把 一块确定大小的内存从Java堆中划分出来。

这个步骤有两个问题:

  1. 如何划分内存。
  2. 在并发情况下, 可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来 分配内存的情况。

划分内存的方法:

“指针碰撞”(Bump the Pointer)

如果Java堆中内存是绝对规整的,所有用过的内存都放在一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离。

 

指针碰撞过程示意图

“空闲列表”(Free List)

如果Java堆中的内存并不是规整的,已使用的内存和空闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例, 并更新列表上的记录。

 

空闲列表法维护内存

解决并发问题的方法:

CAS(compare and swap):虚拟机采用CAS配上失败重试的方式保证更新操作的原子性来对分配内存空间的动作进行同步处理。

本地线程分配缓冲(Thread Local Allocation Buffer,TLAB):把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存。

3、初始化

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头), 如果使用TLAB,这一工作过程也可以提前至TLAB分配时进行。这一步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,程序能访问到这些字段的数据类型所对应的零值

4、设置对象头

在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、 实例数据(Instance Data)和对齐填充(Padding)。 HotSpot虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据, 如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时 间戳等。对象头的另外一部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。初始化零值之后,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头(Object Header)之中。

5、执行方法

执行方法,即对象按照程序员的意愿进行初始化。对应到语言层面上讲,就是为属性赋值(注意,这与上面的赋零值不同,这是由程序员赋的值),和执行构造方法。

对象的内存布局

在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、 实例数据(Instance Data)和对齐填充(Padding)。

 

对象的内存分布结构

1、对象头(Header)

HotSpot 虚拟机的对象头包括两部分(非数组对象,数组对象为三部分)信息。第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC 分代年龄、锁状态标志、线程持有的锁、偏向线程 ID、偏向时间戳、对象分代年龄,这部分信息称为“Mark Word”;

Mark Word 被设计成一个非固定的数据结构以便在极小的空间内存储尽量多的信息,它会根据自己的状态复用自己的存储空间。第二部分是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例;如果对象是一个 Java 数组,那在对象头中还必须有一块用于记录数组长度的数据。因为虚拟机可以通过普通 Java 对象的元数据信息确定 Java 对象的大小,但是从数组的元数据中无法确定数组的大小。
 

对象头结构

这部分数据的长度在 32 位和 64 位的虚拟机(未开启压缩指针)中分别为 32bit 和 64bit。例如,在 32 位的 HotSpot 虚拟机中,如果对象处于未被锁定的状态下,那么 Mark Word 的 32bit 空间中的 25bit 用于存储对象哈希码,4bit 用于存储对象分代年龄,2bit 用于存储锁标志位,1bit 固定为0。在 32 位系统下,存放 Class 指针的空间大小是 4 字节,Mark Word 空间大小也是4字节,因此头部就是 8 字节,如果是数组就需要再加 4 字节表示数组的长度。在 64 位系统及 64 位 JVM 下,开启指针压缩,那么头部存放 Class 指针的空间大小还是4字节,而Mark Word 区域会变大,变成 8 字节,也就是头部最少为 12 字节

压缩指针:开启指针压缩使用算法开销带来内存节约,Java 对象都是以 8 字节对齐的,也就是以 8 字节为内存访问的基本单元,那么在地理处理上,就有 3 个位是空闲的,这 3 个位可以用来虚拟,利用 32 位的地址指针原本最多只能寻址 4GB,但是加上 3 个位的 8 种内部运算,就可以变化出 32GB 的寻址。

32位JVM对象头中的组成及占用大小

2、实例数据(Instance Data)

实例数据部分是对象真正存储的有效信息,也是在程序代码中所定义的各种类型的字段内容。这部分的存储顺序会受到虚拟机分配策略参数(FieldsAllocationStyle)和字段在 Java 源码中定义顺序的影响。

3、对齐填充(Padding)

对齐填充不是必然存在的,没有特别的含义,它仅起到占位符的作用。由于 HotSpot VM 的自动内存管理系统要求对象起始地址必须是 8 字节的整数倍,也就是说对象的大小必须是 8 字节的整数倍。对象头部分是 8 字节的倍数,所以当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。

*估算对象大小及对齐填充

32 位系统下,当使用 new Object() 时,JVM 将会分配 8(Mark Word+类型指针) 字节的空间,128个 Object 对象将占用 1KB 的空间。如果是 new Integer(),那么对象里还有一个 int 值,其占用 4 字节,这个对象也就是 8+4=12 字节,对齐后,该对象就是 16 字节。

假对象a的类结构为:

Class A {    int i;    byte b;    String str;}

其中对象头部占用 ‘Mark Word’4 + ‘类型指针’4 = 8 字节;byte 8 位长,占用 1 字节;int 32 位长,占用 4 字节;String 只有引用,占用 4 字节;那么对象 A 一共占用了 8+1+4+4=17 字节,按照 8 字节对齐原则,对象大小也就是 24 字节。

这个计算看起来是没有问题的,对象的大小也确实是 24 字节,但是对齐(padding)的位置并不对:在 HotSpot VM 中,对象排布时,间隙是在 4 字节基础上的(在 32 位和 64 位压缩模式下),上述例子中,int 后面的 byte,空隙只剩下 3 字节,接下来的 String 对象引用需要 4 字节来存放,因此 byte和对象引用之间就会有 3 字节对齐,对象引用排布后,最后会有 4 字节对齐,因此结果上依然是 7 字节对齐。

 

对象对齐填充前后的差距

对象的访问方式

Java程序需要通过栈上的reference数据来操作堆上的具体对象。由于reference类型在Java虚拟机规范中只规定了一个指向对象的引用,并没有定义这个引用应该通过何种方式去定位、访问堆中的对象的具体位置,所以对象访问方式也是取决于虚拟机实现而定的。目前主流的访问方式有使用句柄直接指针两种。

如果使用句柄访问的话,那么Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息。

class Demo{@Testpublic void test(){    String s;//句柄    String s1=new String();//句柄=实例对象    s1 = "a";//通过句柄操作对象    System.out.println(s1);    System.out.println(s1.hashCode());    }}

如果使用直接指针访问,那么Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而reference中存储的直接就是对象地址。

这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要修改。

使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是一项非常可观的执行成本。就本书讨论的主要虚拟机Sun HotSpot而言,它是使用第二种方式进行对象访问的,但从整个软件开发的范围来看,各种语言和框架使用句柄来访问的情况也十分常见。

区分什么是指针/引用/句柄

  1. 指针是对象在内存中的地址;
  2. 引用是对象的别名,其实质就是功能受限但是安全性更高的指针;
  3. 句柄是指针的指针,句柄实际上是一个数据,是一个Long (整长型)的数据。句柄是一个标识符,是拿来标识对象或者项目的;

堆内存分配策略

为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来。复述两种堆内存分配策略:

指针碰撞( Serial、ParNew等带Compact过程的收集器 ) 假设Java堆中内存是绝对规整的,所有用过的内存都放在一边,空闲的内存放在另一边,中间放着一个指针作为分界点的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”(Bump the Pointer)。

空闲列表( CMS这种基于Mark-Sweep算法的收集器 ) 如果Java堆中的内存并不是规整的,已使用的内存和空闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”(Free List)。

选择哪种分配方式由Java堆是否规整决定,而Java堆是否规整又由所采用的垃圾收集器是否带有压缩整理功能决定。因此,在使用Serial、ParNew等带Compact过程的收集器时,系统采用的分配算法是指针碰撞,而使用CMS这种基于Mark-Sweep算法的收集器时,通常采用空闲列表。

 

java对象内存分配流程

1、栈上分配

通过JVM内存分配可以知道JAVA中的对象都是在堆上进行分配,当对象没有被引用的时候,需要依靠GC进行回收内存,如果对象数量较多的时候,会给GC带来较大压力,也间接影响了应用的性能。为了减少临时对象在堆内分配的数量,JVM通过逃逸分析确定该对象不会被外部访问。那就通过标量替换将该对象分解在栈上分配内存,这样该对象所占用的内存空间就可以随栈帧出栈而销毁,就减轻了垃圾回收的压力。

逃逸分析:逃逸分析是编译语言中的一种优化分析,而不是一种优化的手段。通过对象的作用范围的分析,为其他优化手段提供分析数据从而进行优化。包括全局变量赋值逃逸,方法返回值逃逸,实例引用发生逃逸,线程逃逸:赋值给类变量或可以在其他线程中访问的实例变量。

标量替换标量即不可被进一步分解的量,而JAVA的基本数据类型就是标量(如:int,long等基本数据类型以及reference类型等),标量的对立就是可以被进一步分解的量,而这种量称之为聚合量。而在JAVA中对象就是可以被进一步分解的聚合量。通过逃逸分析确定该对象不会被外部访问,并且对象可以被进一步分解时,JVM不会创建该对象,而会将该对象成员变量分解若干个被这个方法使用的成员变量所代替。这些代替的成员变量在栈帧或寄存器上分配空间。

2、TLAB分配

JVM在内存新生代Eden Space中开辟了一小块线程私有的区域,称作TLAB(Thread-local allocation buffer)。默认设定为占用Eden Space的1%。在Java程序中很多对象都是小对象且用过即丢,它们不存在线程共享也适合被快速GC,所以对于小对象通常JVM会优先分配在TLAB上,并且TLAB上的分配由于是线程私有所以没有锁开销。因此在实践中分配多个小对象的效率通常比分配一个大对象的效率要高。

也就是说,Java中每个线程都会有自己的缓冲区称作TLAB(Thread-local allocation buffer),每个TLAB都只有一个线程可以操作,TLAB结合bump-the-pointer技术可以实现快速的对象分配,而不需要任何的锁进行同步,也就是说,在对象分配的时候不用锁住整个堆,而只需要在自己的缓冲区分配即可。

内存分配规则

(使用Serial/Serial Old收集器)

一:对象优先分配在Eden区
        大多数情况下,对象在新生代中的Eden区分配,当Eden区没有足够空间进行分配时,虚拟机将发生一次Minor GC。
二:大对象直接进入老年代
        大对象是指,需要大量连续内存空间的Java对象,虚拟机提供了相关参数调整大小。
三:长期存活的对象进入老年代
        每次Minor GC,年龄就增加一岁,默认15岁,进入老年代,也可以通过参数调整。
四:动态对象年龄判定
        如果在Survivor空间中相同年龄所有对象大小的总和大小大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代。
五:空间分配担保
        在发生Minor GC前,虚拟机会检查老年代的最大可用连续空间是否大于新生代所有对象的总空间,成立安全,不成立,触发Full GC。

 

 

转载地址:http://xfuqb.baihongyu.com/

你可能感兴趣的文章
mongodb replica sets 测试
查看>>
linux AS6.2 与 as5.4 的对比,性能提升明显
查看>>
FLASHCACHE 的是是非非
查看>>
length() between oracle and postgresql
查看>>
求无序数组总第n大的数
查看>>
99-lisp lisp 的99个问题 P1-10
查看>>
PG 函数的易变性(Function Volatility Categories)
查看>>
Lisp Quote 和Backquote分析
查看>>
PG psql 变彩色显示
查看>>
SICP 练习 1.3
查看>>
pg 数据库HA 启动脚本的两个假设
查看>>
sql_log_bin在GTID复制下的一个现象
查看>>
双主+haproxy手工切换的一个注意点
查看>>
利用binlog2sql实现闪回
查看>>
mongos分片集群下db数量过多导致服务不可用
查看>>
mysql唯一索引的一个小常识--Duplicate entry 'XXX' for key 'XXX'
查看>>
故障处理--mongos count不准
查看>>
mongo3.0.9库命名的一个S级bug
查看>>
跨版本导入数据导致mysqld崩溃
查看>>
xtrabackup对于flush tables with read lock操作的设置
查看>>